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(Received 27 January 2005 and in revised form 24 April 2007)

We have measured the trajectory and visualized the wake of a single sphere falling in a
fluid confined between two closely spaced glass plates (a Hele-Shaw cell). The position
of a sedimenting sphere was measured to better than 0.001d , where d is the sphere
diameter, for Reynolds numbers (based on the terminal velocity) between 20 and
330, for gaps between the plates ranging from 1.014d to 1.4d . For gaps in the range
1.01d–1.05d , the behaviour of the sedimenting sphere is found to be qualitatively
similar to that of an unconfined cylinder in a uniform flow, but our sedimenting
sphere begins to oscillate and shed von Kármán vortices for Re > 200, which is far
greater than the Re = 49 for the onset of vortex shedding behind cylinders in an
open flow. When the gap is increased to 1.10d–1.40d , the vortices behind the sphere
are different – they are qualitatively similar to those behind a sphere sedimenting
in the absence of confining walls. Our precision measurements of the velocity of a
sedimenting sphere and the amplitude and frequency of the oscillations provide a
benchmark for numerical simulations of the sedimentation of particles in fluids.

1. Introduction
The motion of blunt bodies in a fluid has been studied since the early days of

the development of fluid mechanics. Even now sedimenting bodies yield surprising
discoveries and challenges for theoretical analyses, but there have been few experi-
ments using modern imaging techniques to examine a sedimenting body.

We have examined the sedimentation of a single sphere in a fluid contained between
vertical plates separated by a distance only slightly greater than the sphere diameter.
We focus on the flow dependence on the separation between the plates. We make
measurements for Reynolds numbers ranging from about 30 to 300, but we do not
examine in detail the values of the Reynolds numbers corresponding to successive
bifurcations. We measure the sphere position in a co-moving reference frame and
obtain high-precision results for the sphere velocity and the properties of the wake.
Our results for the sphere terminal velocity should long serve as a benchmark for
algorithms designed for the difficult general problem of numerical simulation of the
Navier–Stokes equation in a system with moving boundaries.

Our observations reveal some qualitative features that are common to bodies sedi-
menting in the absence of sidewalls, and to flow past a fixed sphere or a fixed cylinder
in unconfined geometries. Hence we review these situations in the following section.
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We now define our notation. The x-axis is in the vertical direction, increasing
in the direction of gravity; the y-axis is in the horizontal direction, parallel to the
confining glass plates; and the z-axis is in the horizontal direction, perpendicular to
the glass plates. The ratio of the distance between the sidewalls dgap to the diameter
of the sphere d is Γ = dgap/d . After a sphere is released, it reaches a terminal velocity
ut , as defined in § 4; the corresponding Reynolds number is Re = dut/ν, where ν

is the kinematic viscosity of the fluid. For Re greater than a critical value, the
sphere oscillates; the oscillations are characterized by the non-dimensional Strouhal
frequency, St = f d/ut , where f is the oscillation frequency. We also use the Galileo
number, G =(|ρp/ρf − 1|g)1/2d3/2/ν, where ρp and ρf are the particle and fluid
densities, respectively, and g is the gravitational acceleration.

2. Related work
2.1. Free sphere

The terminal velocity of an unconfined sedimenting sphere was measured
by Nakamura (1976) and by Clift, Grace & Weber (1978) but has not been the focus
of more recent studies. Nakamura (1976) also observed an attached recirculating eddy
behind a sedimenting sphere for 10 < Re < 190, and Clift et al. (1978) described a
transition where the wake becomes oscillatory at Re ≈ 130. Simulations by Pan (1999)
found that for Re > 135, a sphere falls with a spiral trajectory. This spiral motion has
also been observed for the same Re in experiments on rising spheres (Karamanev &
Nikolov 1992). For Re > 200, the wake develops a pair of bound counter-rotating
vortex threads (Jenny, Dusek & Bouchet 2004), and for Re > 270, the vortex threads
are shed in pairs behind the sphere as it descends (Clift et al. 1978); simulations
yield St =0.176 for the shedding frequency (Jenny et al. 2004). For larger Reynolds
number, the trajectory of the sphere depends strongly on its density relative to the
fluid. If the sphere density is smaller than about one-third the fluid density, the sphere
ascends in zigzagging or irregular spiral trajectory (Karamanev & Nikolov 1992). The
irregular spiral motion is a consequence of the time-dependent forces that act on a
sphere when the wake is unstable; the Strouhal number coincides with that of the
unstable wake for fixed spheres (Karamanev 1994; Karamanev, Chavarie & Mayer
1996; Karamanev & Nikolov 1992). If the density of a sphere is comparable with or
larger than the density of the fluid, the wake structure is similar to that of a fixed
sphere (see the following subsection).

2.2. Fixed sphere

The fixed sphere problem is simpler than a free sphere because there is no motion
of the sphere to affect the flow, and Re is set by the imposed free-stream velocity.
For Re > 24 the boundary layer detaches, and a steady toroidal vortex forms behind
the sphere (Taneda 1956; Johnson & Patel 1998). The longitudinal extent of this
vortex increases with Reynolds number, and at about Re = 200 the flow bifurcates to
a non-axisymmetric flow with two parallel counter-rotating vortex tubes attached to
the recirculation region on opposite sides of the sphere and extending downstream;
this flow pattern has a plane of symmetry perpendicular to the plane containing
the vortex tube centres. The critical Reynolds number obtained in a linear stability
analysis by Natarajan & Acrivos (1993) was 210, while direct numerical simulations
by Tomboulides & Orszag (2000) and Johnson & Patel (1998) gave 212 and 211,
respectively, and an experiment by Ormieres & Provansal (1999) yielded 180. At
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Re ≈ 270, the parallel vortex tubes begin to form hairpin vortices that are periodically
swept away. Schouveiler & Provansal (2002) interpreted this phenomenon in terms
of the Crow vortex pair instability (Crow 1970; Widnall, Bliss & Zalay 1971) and
established that this transition occurs with no hysteresis and with a well-defined
frequency, St = 0.127. Ormieres & Provansal (1999) observed the vortical structure and
stability in the proximity of this transition. Numerical simulations by Tomboulides &
Orszag (2000), Johnson & Patel (1998), and Lee (2000) agree with the experimental
observations and provide a detailed description of the motion. In the Reynolds number
range 270–370, vortex shedding still displays a planar symmetry, and oppositely
oriented hairpin vortices are generated. This double-sided wake structure arises from
the one-sided vortex shedding and the interaction of the free stream with the shed
vortices (Johnson & Patel 1998). At Re ≈ 370, the planar symmetry is lost, and the
wake develops a low-frequency modulation (Mittal 2000).

2.3. Fixed cylinder

Experimental and theoretical studies of flow past a long cylinder (at a large distance
from sidewalls) have been reviewed by Zdravkovich (1997, 2002), and Williamson
(1996). Coutanceau & Defaye (1991) observed an attached recirculation zone that
formed at the rear of a cylinder for 4.5 < Re < 35; Williamson (1996) described this
regime as laminar steady flow with two symmetric recirculation vortices attached to
the cylinder. The length of the vortex pair increases with the Reynolds number, and
at Re = 35 the width of the recirculation zone is about the same size as the cylinder
diameter. The recirculation zone becomes unstable at Re = 46. These transitions
were described differently by Zdravkovich (1997), who considered fluctuations in
the behaviour of the entire system as the main indicator of transitions. Beyond
Re ≈ 50 the far downstream point of the recirculation region develops instabilities,
and the wake behind the cylinder begins to shed vortices from alternate sides of the
recirculation zone. These alternating two-dimensional von Kármán vortices have axes
of rotation parallel or slightly oblique to the axis of the cylinder. Simulations (Mittal
2001) and experiments (Hover, Techet & Triantafyllou 1998) in this regime show that
the forces felt by the cylinder are periodic and coincide with the shedding of vortices.
The Strouhal number increases continuously and monotonically from 0.12 to 0.19
in the range 49 < Re < 180, where vortices are shed from the cylinder parallel or
slightly obliquely to the cylinder axis. At higher Re, three-dimensional effects become
increasingly important.

3. Experimental methods
Our experiment was designed to track precisely the position of a single sphere

sedimenting in a Newtonian fluid in a Hele-Shaw cell. The cell was constructed
of two glass plates that were parallel to the gravitational force. The two glass
plates were 1.27 cm thick, 60 cm high, and 25 cm wide, and were separated by
precision-ground stainless steel spacers that yielded gap-to-ball-diameter ratios
Γ = (1.014, 1.044, 1.101, 1.201, 1.401) ± 0.003.

Glass spheres of high sphericity had a diameter d =0.3175 ± 0.0003 cm, and densit-
ies ρp = 2.52 ± 0.02 g cm−3 (Winsted Precision Ball Company) and 3.07 ± 0.02 g cm−3

(Sapphire Engineering). (The densities of the glass spheres were determined by
measuring the total mass of five balls with a precision scale.) Measurements were
made using one sphere of each material for each cell configuration.
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The desired range of Reynolds number, 20 <Re < 300, was achieved using dense
aqueous neutral solutions of an inert salt, sodium metatungstate (Na6H2W12O40),
obtained from Sometu-USA (www.sometu.com). We prepared fluid solutions with
densities in the range 1< ρf < 2.5 g cm−3, while the kinematic viscosity ν = µ/ρf varied
in the range 0.013–0.025 cm2 s−1. The experiment was operated at room temperature,
which was recorded for each measurement. The viscosity of a 1.93 g cm−3 sodium
metatungstate solution was measured with a cone-and-plate viscometer for shear
rates ranging from 100 to 1500 s−1, and was found to be a constant 1.30 cm2 s−1 (at
25 ◦C) within the 2 % uncertainty of the measurements; hence non-Newtonian effects
should be negligible.

To determine the terminal velocity and measure small fluctuations of the sphere
position (at most ∼10−2d) with high positional precision, we followed the motion of
the sphere in the co-moving frame as the sphere fell many diameters. A sphere was
tracked in the horizontal and vertical directions; motion in the direction perpendicular
to the plates was not determined. A 60 frames per second, 776 × 576 pixel CCD camera
was mounted on a vertical translation stage that followed a sphere at approximately
its terminal velocity. To correct for the small relative drift between the camera and
the sphere as well as for the vibrations of the moving camera, a row of stationary
reference marks was imaged throughout the vertical path of the camera. Illumination
was provided by a red LED array; the light passed through a plastic diffusion screen.

The trajectory of the camera was determined using the relative positions of the
reference marks from image to image. This gave the trajectory of the camera with
sub-pixel accuracy. Additional care was taken to account for any tilt in the mounting
of the camera. A thin wire was attached to a mass and imaged to determine the
direction of gravity relative to the camera mount.

The position of a sphere was tracked in each image of a series of images. The sphere
was illuminated from behind and appeared as a dark circular feature approximately
80 pixels in diameter. Each image was analysed using a centre-of-mass particle tracking
method adapted from Crocker & Grier (1996). The sphere position in each image and
the positions of stationary reference marks were calculated using the same algorithm,
and the absolute vertical position was found by integrating the motion of the camera
over its entire path relative to reference marks. The first moment of the intensity
distribution corresponding to a sphere was calculated with sub-pixel accuracy and
was taken to correspond to the centre of the sphere.

The centre-of-mass tracking algorithm resolved motion as small as 10−3d (∼3 µm)
over a sedimentation distance of 150d . The measurements yielded Re, the time-
dependence of the fluctuations in the transverse (y) and gravitational (x) directions,
and the corresponding oscillation frequencies, fy and fx .

We characterized the wake of the sphere using digital particle image velocimetry
(DPIV) synchronized with our particle tracking system. For the cases where DPIV
measurements were made, the fluid was seeded with 10 µm silver-coated glass
spheres, and the particle imaging camera was fitted with a red filter so that images
used for particle tracking would be sensitive only to the position of the subject
sphere. Additionally, during these DPIV measurements, a second camera imaging at
1016 × 1008 pixels at 15 frames per second was mounted beside the particle imaging
camera. Although the DPIV camera imaged at 15 frames per second, each frame
consisted of two images separated by a set amount of time (400–800 µs), depending
on the terminal velocity of the sphere. This camera was fitted with a green filter for
use with a YAG laser. Illumination from above was then applied using a pulsed YAG
laser sheet. The green laser sheet scattered light from the silver-coated spheres so that
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DPIV images could be obtained using the second camera. During an experimental
measurement, the particle tracking camera would detect the motion of the sphere and
then trigger the DPIV camera to begin synchronous image capturing.

Each set of images was analysed using the algorithm MatPIV.† The algorithm
uses cross-correlation PIV and an iterative interrogation window to calculate the
velocity and vorticity fields of the fluid flow. The final interrogation window size was
16 × 16 pixels or 0.06 × 0.06 cm.

After filling the cell with the aqueous solution of choice, a glass sphere was held
in position by a tube at a pressure below atmospheric. After the sphere was released,
the camera was set into motion and images were recorded. Multiple measurements
were made for the same sphere.

After each series of measurements, the density ρf of the sodium metatungstate
solution was measured using a Gay-Lussac bottle with a calibrated volume of
10.00 ± 0.03 ml to obtain a known volume whose mass could then be measured.
This measurement was repeated three times for each solution. Immediately following
a set of experimental measurements, a sample of the solution was injected into
a Cannon-Fenske capillary viscometer and the efflux time for the solution to fall
under the influence of gravity was measured. The calibrated viscosity was found by
multiplying the efflux time by the viscometer constant. The viscosity measurement
was repeated three times per fluid sample. Following each viscosity measurement,
the viscometer was cleaned with distilled water and isopropanol and then dried with
nitrogen to remove all traces of the solution.

We made 10–20 observations for five different gap configurations for a variety of
fluid densities. This provided over 800 single-particle measurements. DPIV data were
obtained for a few cases that exhibited oscillatory behaviour; for these selected cases
DPIV and particle trajectory measurements were made simultaneously.

4. Data analysis
After a sphere was released, it reached its terminal velocity within a distance of

typically 5d , and its asymptotic motion was then followed for a distance of about
150d . The position of the camera was determined as a function of time in both the
vertical (gravitational, x) and transverse (y) directions, and then the sphere trajectory
was calculated relative to its starting position. After the sphere has reached 99 %
of the mean maximum velocity, its position x(t) was fitted to a line to obtain the
terminal velocity, ut , which was used to find Re. The mean motion was subtracted
to yield the fluctuations in x(t), while the transverse position y(t) was determined
directly.

The trajectory of a sphere was measured for five different gap distances. For
each experimental condition the terminal velocities were averaged to obtain ut with
statistical uncertainty less than 1%. A post-transient trajectory for Re = 125 is shown
in figure 1. For this case the sphere reached 99 % of its terminal velocity within 0.5 s.
The motion of the sphere in the average co-moving frame is shown in figure 1, and
the position x(t) in the laboratory frame is shown in the inset.

The frequencies of periodic oscillation were obtained from Fourier transforms of the
co-moving positions as a function of time, x(t) and y(t) (each filtered using a triangular
windowing method). The amplitudes of the oscillation were obtained directly from
position data that had been bandpass filtered at the oscillation frequency.

† http://www.math.uio.no/∼jks/matpiv/
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Conditions Experimental results

ρp ρf ν ut Ax Ay
ρp

ρf

(g cm−3) (g cm−3) (cm2 s−1) (cm s−1) Re (d) Stx (d) Sty

1.151 2.523 2.193 0.01695 4.46 ± 0.03 84 ± 1 – – – –
1.167 2.523 2.162 0.01607 4.88 ± 0.05 96 ± 1 – – – –
1.192 2.523 2.117 0.01521 5.47 ± 0.06 114 ± 2 – – – –
1.188 2.523 2.123 0.01538 5.70 ± 0.13 118 ± 3 – – – –
1.219 2.523 2.070 0.01431 6.28 ± 0.07 139 ± 2 – – – –
1.243 2.523 2.030 0.01398 6.90 ± 0.07 157 ± 2 – – – –
1.274 2.523 1.980 0.01294 7.35 ± 0.05 180 ± 2 – – – –
1.401 3.073 2.193 0.01695 8.67 ± 0.04 162 ± 1 – – – –
1.422 3.073 2.162 0.01607 9.07 ± 0.07 179 ± 2 – – – –
1.451 3.073 2.117 0.01521 9.62 ± 0.06 201 ± 2 – – – –
1.447 3.073 2.123 0.01538 9.68 ± 0.12 200 ± 3 – – – –
1.484 3.073 2.070 0.01431 10.22 ± 0.18 227 ± 4 – – – –
1.514 3.073 2.030 0.01398 10.75 ± 0.11 244 ± 3 – – 0.016 ± 0.006 0.130
1.552 3.073 1.980 0.01294 11.30 ± 0.06 277 ± 3 – – 0.071 ± 0.006 0.141

Table 1. Results and experimental conditions for gap ratio Γ = 1.014.
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Figure 1. The vertical position of a particle in a reference frame moving with the terminal
velocity. In this frame the amplitude of oscillations is less than 1 % d , yet the noise level of
the data is less than 0.1 % d . Inset: The terminal velocity was obtained from a linear fit of
post-transient data for x(t) in the laboratory frame. Γ = 1.30, Re = 125.

5. Results
5.1. Overview

The data are presented in tables 1–5. Figure 2 shows the different regimes of motion
that were observed for different gap sizes Γ . At low Re the motion was time
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Conditions Experimental results

ρp ρf ν ut Ax Ay
ρp

ρf

(g cm−3) (g cm−3) (cm2 s−1) (cm s−1) Re (d) Stx (d) Sty

1.108 2.523 2.278 0.01831 3.48 ± 0.03 60 ± 1 – – – –
1.132 2.523 2.230 0.01782 4.11 ± 0.03 73 ± 1 – – – –
1.153 2.523 2.187 0.01640 4.76 ± 0.05 92 ± 1 – – – –
1.192 2.523 2.117 0.01536 5.67 ± 0.06 117 ± 2 – – – –
1.221 2.523 2.067 0.01454 6.38 ± 0.04 139 ± 1 – – – –
1.349 3.073 2.278 0.01831 7.87 ± 0.07 136 ± 2 – – – –
1.378 3.073 2.230 0.01782 8.48 ± 0.07 151 ± 2 – – – –
1.405 3.073 2.187 0.01640 8.90 ± 0.04 172 ± 1 – – – –
1.452 3.073 2.117 0.01536 9.84 ± 0.08 203 ± 2 – – – –
1.487 3.073 2.067 0.01454 10.42 ± 0.09 228 ± 3 – – 0.004 ± 0.002 0.126

Table 2. Results and experimental conditions for gap ratio Γ = 1.044.

Conditions Experimental results

ρp ρf ν ut Ax Ay
ρp

ρf

(g cm−3) (g cm−3) (cm2 s−1) (cm s−1) Re (d) Stx (d) Sty

1.047 2.523 2.409 0.02434 1.99 ± 0.01 26 ± 1 – – – –
1.072 2.523 2.354 0.02252 3.09 ± 0.01 44 ± 1 – – – –
1.109 2.523 2.275 0.01939 4.25 ± 0.05 70 ± 1 – – – –
1.146 2.523 2.202 0.01772 5.54 ± 0.04 99 ± 1 – – – –
1.219 2.523 2.070 0.01450 7.83 ± 0.02 172 ± 1 – – – –
1.259 2.523 2.004 0.01343 8.92 ± 0.01 211 ± 1 – – – –
1.227 3.073 2.504 0.02978 6.26 ± 0.01 67 ± 1 – – – –
1.276 3.073 2.409 0.02434 7.78 ± 0.01 102 ± 1 – – – –
1.306 3.073 2.354 0.02252 8.65 ± 0.02 122 ± 1 – – – –
1.351 3.073 2.275 0.01939 9.90 ± 0.01 162 ± 1 – – – –
1.395 3.073 2.202 0.01772 11.00 ± 0.01 197 ± 1 – – – –
1.485 3.073 2.070 0.01450 12.95 ± 0.04 284 ± 1 – – 0.015 ± 0.003 0.120
1.534 3.073 2.004 0.01343 13.91 ± 0.02 329 ± 1 – – 0.024 ± 0.003 0.120

Table 3. Results and experimental conditions for gap ratio Γ = 1.101.

Conditions Experimental results

ρp ρf ν ut Ax Ay
ρp

ρf

(g cm−3) (g cm−3) (cm2 s−1) (cm s−1) Re (d) Stx (d) Sty

1.067 2.523 2.364 0.02302 3.08 ± 0.02 42 ± 1 – – – –
1.104 2.523 2.286 0.01998 4.47 ± 0.01 71 ± 1 – – – –
1.164 2.523 2.168 0.01595 6.60 ± 0.02 131 ± 1 – – – –
1.185 2.523 2.129 0.01488 7.34 ± 0.03 157 ± 1 0.005 ± 0.002 0.245 0.003 ± 0.001 0.124
1.300 3.073 2.364 0.02302 8.97 ± 0.01 124 ± 1 – – 0.001 ± 0.001 0.123
1.344 3.073 2.286 0.01998 10.15 ± 0.03 161 ± 1 0.006 ± 0.001 0.239 0.004 ± 0.001 0.119
1.418 3.073 2.168 0.01595 11.84 ± 0.02 236 ± 1 0.012 ± 0.004 0.127 0.004 ± 0.001 0.126
1.444 3.073 2.129 0.01488 12.40 ± 0.03 265 ± 1 0.025 ± 0.005 0.128 0.003 ± 0.001 0.128

Table 4. Results and experimental conditions for gap ratio Γ = 1.201.
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Conditions Experimental results

ρp ρf ν ut Ax Ay
ρp

ρf

(g cm−3) (g cm−3) (cm2 s−1) (cm s−1) Re (d) Stx (d) Sty

1.043 2.523 2.418 0.02438 2.36 ± 0.01 31 ± 1 – – – –
1.106 2.523 2.282 0.01951 5.07 ± 0.02 83 ± 1 – – – –
1.152 2.523 2.190 0.01693 6.67 ± 0.02 125 ± 1 0.011 ± 0.001 0.225 0.007 ± 0.001 0.112
1.185 2.523 2.128 0.01496 7.68 ± 0.02 163 ± 1 0.016 ± 0.002 0.222 0.007 ± 0.001 0.111
1.219 2.523 2.070 0.01436 8.64 ± 0.02 191 ± 1 0.018 ± 0.002 0.222 0.006 ± 0.001 0.111
1.266 2.523 1.993 0.01307 9.97 ± 0.03 242 ± 1 0.041 ± 0.004 0.113 0.009 ± 0.002 0.113
1.271 3.073 2.418 0.02438 8.81 ± 0.02 115 ± 1 0.008 ± 0.002 0.224 0.007 ± 0.001 0.112
1.347 3.073 2.282 0.01951 10.90 ± 0.03 177 ± 1 0.013 ± 0.003 0.214 0.006 ± 0.001 0.107
1.403 3.073 2.190 0.01693 12.25 ± 0.01 230 ± 1 0.020 ± 0.001 0.109 0.007 ± 0.001 0.109
1.444 3.073 2.128 0.01496 13.23 ± 0.02 281 ± 1 0.022 ± 0.005 0.109 0.007 ± 0.001 0.110
1.485 3.073 2.070 0.01436 15.06 ± 0.40 333 ± 9 0.044 ± 0.029 0.077 0.004 ± 0.002 0.069

Table 5. Results and experimental conditions for gap ratio Γ = 1.401.
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Figure 2. Different regimes of motion and the wake structure observed for a sedimenting
sphere between closely spaced plates. Reynolds numbers Re were found from particle tracking,
while wake types were determined from DPIV images of the flow following the sphere. The
dotted line (drawn to guide the eye) separates regions with no discernible periodic behaviour
(left, unfilled circles) from regions with oscillatory behaviour (right, filled circles). In the region
below the horizontal dashed line, the wake is essentially two-dimensional, and in the remainder
of the diagram is three-dimensional. The time dependence of trajectories of three cases labelled
(a),(b), and (c) is shown in figure 3.

independent, and at sufficiently large Re the motion was oscillatory. For our largest
gap (Γ = 1.4) the onset of oscillatory behaviour occurred between Re =83 and
Re = 125, while for our smallest gap (Γ =1.014), this transition occurred between
Re = 227 and Re = 244.
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Figure 3. Vertical (x) and transverse horizontal (y) components of the position of a
sedimenting sphere with respect to the average co-moving reference frame for three cases.
(a) The transverse oscillation amplitude for Γ = 1.014 is greater than for Γ = 1.4, shown in
(b) and (c). The trajectory for (a) in the vertical direction does not exhibit regular periodic
motion, while trajectories for Γ =1.4 exhibit periodic oscillations at twice the frequency of the
transverse oscillation (low Re, (b)) and at the same frequency of the transverse motion (high
Re, (c)).

Most trajectories exhibited a small irregular transverse drift that was not monotonic,
as illustrated in figure 3(a). This drift was different for drops under the same
conditions, but it was always irregular and small, typically less than 0.5d over
the 150d trajectory length. This drift was removed from our figures.

The points in figure 2 labelled (a), (b), and (c) represent the three most common
types of observed oscillatory behaviour. Figure 3(a) shows the trajectory of a falling
sphere with Γ = 1.014 (two-dimensional wake). In the co-moving reference frame the
position of the sphere in the gravitational direction during the entire fall deviated
from the centre of the frame by less than 10 % of a sphere diameter; this deviation did
not contain any discernible periodic pattern. In the transverse direction y, the sphere
exhibited oscillatory behaviour. For the larger gap (Γ = 1.401, three-dimensional
wake) in figures 3(b) and 3(c), the oscillation amplitude was smaller. In figure 3(b)
(Re = 125), the frequency of oscillation in the x-direction was twice the frequency of
oscillation in the y-direction, while for figure 3(c), where Re = 242, the frequencies of
oscillation in the x-and y-directions were equal.

There is a gradual transition with increasing Re from the type of x(t) trajectory in
figure 3(b) to that in figure 3(c). At small Re, Fourier spectra of x(t) contain both Sty
and 2Sty but 2Sty is dominant. As Re is increased, the two components become equal
in strength and eventually the dominant frequency component in x(t) becomes Sty .
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Figure 4. The distinction between particles with a quasi-two-dimensional wake (Γ � 1.05) and
a three-dimensional wake (Γ � 1.10) is apparent in this comparison of the terminal velocity ut

of a sedimenting sphere in a Hele-Shaw cell with the velocity u
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t of a sphere without confining

sidewalls. The symbols indicate the gap-to-sphere-diameter ratio (�, Γ = 1.01; �, Γ = 1.05;
�, Γ = 1.10; �, Γ =1.20; �, Γ = 1.30; �, Γ = 1.40); unfilled points indicate time-independent
motion and filled points indicate periodic trajectories.

5.2. Terminal velocity

In figure 4 we compare our terminal velocity values ut with the velocities u
free
t for free

sedimenting spheres. For u
free
t we use an expression that Clift et al. (1978) found to fit

available data for unconfined sedimenting spheres within 4% for 12.2 < Re < 6350,

log10 Re = −1.81391 + 1.34671W − 0.12427W 2 + 0.006344W 3, (5.1)

where W = log10(
4
3
G). Our results for ut/u

free
t separate into two distinct groups; a

small gap case (Γ � 1.05), where the terminal velocities approach an asymptotic
value less than 55 % of that of free spheres, and a larger gap case (1.1 � Γ � 1.4),
where the terminal velocities are larger but asymptotically still at most 75 % of that
of free spheres.

5.3. Wake structure

The structures of the wakes behind the oscillating spheres for conditions in figure 3
are shown in figure 5. (Wakes measured for cases without oscillation did not exhibit
significant structure.) For Γ = 1.014 (figure 5a), the von Kármán vortex structure of
the wake can be seen clearly in the two magnified plots; note that the Reynolds
number (277) is well above the value 220 that corresponds to the onset of vortex
shedding. As a vortex is shed, the sphere begins to move in the opposite transverse
direction.

In figure 5(b) the gap distance is 40 % larger than the diameter of a sphere and
Re is slightly above the onset of oscillations for this gap size. A sphere creates two
three-dimensional trailing structures during the fall. For a larger Re (figure 5c), the
sphere sheds vortices. The time sequence of images shows that a vortex pair that is
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Figure 5. Flow field images at multiple times for the same conditions as in figure 3. Velocity
values are indicated by the line segments and vorticity values by background colours. For
reference the sphere is shown as a black circle. In the small-gap case (a), the regions in dashed
boxes (each magnified in vorticity in a box to their right) show von Kármán vortices at different
points during a cycle.

created at time t0 is carried away from the sphere and a new vortex pair is created.
The shedding frequencies in figures 5(b) and 5(c) are the same as the corresponding
frequencies for the trajectory motion (figures 3b and 3c).
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Figure 6. The amplitude of oscillations grows exponentially at a rate of 8.14 s−1

(Γ = 1.014, Re = 277). Inset: The oscillatory trajectory of the sphere corresponding to the
amplitude measurement.

5.4. Γ � 1.05

For 60 < Re < 230, trajectories exhibited small, slow aperiodic variations. At
Re = 230, a falling sphere began to exhibit periodic transverse oscillations, which
were superposed on the slow aperiodic oscillations observed at smaller Re; no vertical
oscillation was discernible. The transverse oscillations correspond to the creation and
shedding of counter-rotating von Kármán vortices, as seen in figure 5(a). The structure
of the quasi-two-dimensional vortices is similar to that for flow past a cylinder. Our
measurements of the oscillation amplitude yield an exponential growth followed by
saturation (figure 6); similar behaviour has been found for flow past a fixed sphere
Provansal, Schouveiler & Leweke (2004).

5.5. 1.1 � Γ � 1.4

The transition from non-periodic to periodic behaviour observed for this case is
indicated in figure 2 by the dotted line. We analysed the data using the method of
Schouveiler & Provansal (2002), who measured for flow past a fixed sphere (without
confining sidewalls) the fluctuations of the fluid velocity in the vertical direction
directly behind the sphere. Schouveiler & Provansal (2002) determined that the
energy of these fluctuations at the primary shedding frequency increased linearly with
increasing Re, indicating that the transition was a supercritical Hopf bifurcation.

We measured the motion of the sphere (rather than the fluid velocity) and found
that above the onset of oscillations, the average amplitude of the velocity fluctuations
increased linearly with Re (figure 7). A linear fit to the data for Γ =1.30 and 1.40
gives Re = 89 for this Hopf bifurcation.

For Re close to onset of oscillatory behaviour, a sphere oscillates in the vertical
direction at twice the frequency of the transverse oscillations (see figure 3b). The
spectral power at Sty and 2Sty , plotted in figure 8(a), shows an evolution in behaviour
with increasing Re: at large Re the mode Sty approaches 100 % of the power. This
evolution is illustrated by the phase-space portraits in figure 8(b). At Re = 125 a
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Figure 7. The square of the average amplitude of the velocity fluctuations, u2
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increases linearly with Re beyond the onset of oscillations. The graph includes measurements
for Γ = 1.30 (�), and 1.40 (�).

sphere’s motion is symmetric in the vertical and horizontal directions, while for larger
Re, the motion becomes asymmetric as one lobe decreases in size and the opposite
lobe increases. Eventually, the smaller lobe disappears completely.

6. Discussion
Our measurements on spheres of diameter d sedimenting in a Hele-Shaw cell

used digital imaging to track a sphere’s position with a precision better than 0.001d

(tables 1–5), which is far better precision than previous experiments on sedimenting
spheres. Further, information on the velocity field was obtained using particle imaging
velocimetry. Our experiments examined particularly the dependence of the behaviour
on Γ (the ratio of plate separation to d). The measurements revealed a clear distinction
between the behaviour for spheres sedimenting for 1.014 � Γ � 1.044, where the
behaviour has qualitative similarities to flow past a fixed unconfined cylinder, and the
behaviour for 1.10 � Γ � 1.40, where the behaviour is qualitatively similar to that
for an unconfined sedimenting sphere and for flow past a fixed sphere. A sedimenting
sphere in a Hele-Shaw cell is a rather different problem from a sphere sedimenting
without sidewalls, and from a fixed sphere or cylinder in a uniform flow, so no direct
correspondence between our study and these other problems can be expected, but we
mention some qualitative similarities in behaviour that are helpful in interpreting the
observed phenomena.

For Γ = 1.014 and Γ = 1.044, the pattern of the vortices observed for Re > 240 is
like the 2S configuration of flow past a cylinder observed by Jauvtis & Williamson
(2004)(see also Govardhan & Williamson 2000), i.e. one vortex is shed per half-cycle
of particle oscillation. For our sedimenting sphere, the amplitude of the transverse
oscillation was at most 0.07d , which was observed for particle-to-fluid density ratios
(ρp/ρf ) = 1.5 and Re = 277. In contrast, the amplitude of the transverse oscillation
of a cylinder with similar density ratios is as large as 1.5d (for Re ≈ 5000).
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Figure 8. (a) The amplitude of the power spectrum for the trajectory of a sphere in the vertical
direction for Γ = 1.40. For low Re the dominant component oscillates at twice the frequency of
the oscillations in the transverse direction, but as Re increases, the component at the frequency
of the transverse oscillation becomes dominant (�, Stx = Sty; �, Stx = 2Sty). (b) The trajectory
of a sphere (in its co-moving frame) shows the transition from the frequency-doubled vertical
oscillation to the single-frequency oscillation at higher Re.

Further, for Γ = 1.014 and Γ = 1.044, as a sphere releases a clockwise (counter-
clockwise) vortex, the sphere moves to the right (left) (cf. figure 5a). These observations
are consistent with the analysis of Jauvtis & Williamson (2004) (see also Lighthill
1986), who suggested that the force exerted on the particle due to a vortex shed
upward will generate a horizontal force given by

Fv = ρΩ × Uv, (6.1)

where Fv is the vortex force, Ω is the total vorticity, and Uv is the fluid velocity
around the particle.

In the smallest gap that we studied, Γ = 1.014, the sphere’s motion was time
independent at Re = 227 and oscillatory at Re = 244; thus the onset of oscillations
occurs at a much larger Re value than the 49 found for oscillations of flow past
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a cylinder without sidewalls (Williamson 1996). Similarly, observations of flow past
cylinders between end plates revealed that the critical Reynolds number increased
as the aspect ratio (length/diameter) decreased, an effect attributed to the stabilizing
effect of the walls on the flow (Norberg 1994; Lee & Budwig 1991).

Our measurements for different Γ and Re yielded Strouhal frequencies in the
range 0.12–0.15, which covers the range observed for flow past unconfined cylinders
(Williamson & Roshko 1988) and bubbles with density ratios larger than 2.5
(Jenny et al. 2004). For our largest plate separation, Γ = 1.40, we observed time-
independent motion at Re = 83 and oscillatory motion at Re = 125 (table 5); this
result can be compared to Re = 135 found for the onset of oscillations in a three-
dimensional numerical simulation of a sphere sedimenting without sidewalls (Pan
1999). Further, the flow field and vorticity we observed for a sedimenting sphere
with Γ = 1.40 (figure 5) were similar to the results obtained for the wake behind
a sphere for Re =345 (Schouveiler & Provansal 2002, figure 6). Our visualizations
using Kaliroscope particles for Γ =1.20 and Re = 310 (not shown here) reveal that
the structure of the wake is composed of sequences of hairpin vortices akin to those
observed in the wake of spheres (Schouveiler & Provansal 2002) and bubbles (Brucker
1999).

No previous study has examined sedimentation in a Hele-Shaw cell as a function
of plate separation. Thus our results will serve as a guide and benchmark for future
experiments and for direct numerical simulations of the Navier–Stokes equation for
sedimenting spheres. Numerical simulations for this problem are difficult not only
because of the moving boundary but also because of the wide range of spatial scales;
for example, in our experiments with the smallest gap between the plates (Γ = 1.014),
the distance between the sphere and a wall is ∼140 times smaller than the diameter of
the sphere. Future experiments and simulations should investigate how the behaviour
of a confined sphere evolves with increasing plate separation (Γ > 1.4) to that of an
unconfined sphere. Further, our measurements examined sedimentation at only a few
values of Re, so it would be interesting to study in detail the sequence of bifurcations
that occurs as a function of Reynolds number.
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